

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Subsidiary Level in Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Section A

Question	Answer	Mark
Number		
1(a)	The only correct answer is C (the peak becomes lower and further to the right)	(1)
	A is not correct because the peak becomes lower	
	B is not correct because the peak becomes lower and moves further to the right	
	D is not correct because the peak moves further to the right	

Question	Answer	Mark
Number		
1(b)	The only correct answer is C (the activation energy moves to the left and the peak stays the same)	(1)
	A is not correct as the activation energy would move to the left	
	B is not correct as the peak would not move to the right	
	D is not correct as the activation energy would move to the left and the peak stays the same	

Answer	Mark
The only correct answer is D (rate decreases, yield decreases)	(1)
A is not correct because the rate and yield would decrease	
D is not connect because the nate would decrease	
b is not correct decause the rate would decrease	
C is not correct because the yield would decrease	
e is not correct occurse the yield would decrease	
7	The only correct answer is D (rate decreases, yield decreases)

Question	Answer	Mark
Number		
2 (b)	The only correct answer is B (rate increases, yield decreases)	(1)
	A is not correct because the yield would decrease	
	C is not correct because the rate would increase and the yield decrease	
	D is not correct because the rate would increase	

Question	Answer	Mark
Number		
2(c)	The only correct answer is C (416)	(1)
	A is not correct because only one H_2 has been included in the calculation	
	${\bf B}$ is not correct because a value of – 206 was used as the enthalpy change	
	D is not correct because only one O-H bond has been included in the calculation	

Question	Answer	Mark
Number		
3	The only correct answer is D (Cu(s) + C(s) + $1\frac{1}{2}O_2(g) \rightarrow CuCO_3(s)$)	(1)
	A is not correct because the oxygen is not in its standard state	
	This not correct because the oxygen is not in its standard state	
	B is not correct because the equation has been doubled	
	$m{C}$ is not correct because the copper and carbon are not in their standard states	

Question	Answer	Mark
Number		
4	The only correct answer is D (the first ionisation energy of magnesium is greater than that of calcium)	(1)
	A is not correct because calcium hydroxide is more soluble than magnesium hydroxide in water	
	B is not correct because not all Group 2 metals give a characteristic flame test colour	
	C is not correct because magnesium carbonate does thermally decompose when heated	

Question	Answer	Mark
Number		
5	The only correct answer is A (calcium carbonate)	(1)
	B is not correct because it would give off a brown gas	
	C is not correct because it would give a yellow flame and not thermally decompose	
	D is not correct because it would give off a brown gas	

Question Number	Answer	Mark
6	The only correct answer is D (electrons emit energy as they drop to a lower energy level)	(1)
	A is not correct because this does not produce the flame colour	
	B is not correct because electrons do not emit energy when jumping to a higher energy level	
	C is not correct because electrons do not absorb energy when they drop down to a lower energy level	

Question	Answer	Mark
Number		
7	The only correct answer is A (20 cm ³ of 0.25 mol dm ⁻³ sulfuric acid)	(1)
	B is not correct because this contains twice as many moles of sulfuric acid for neutralisation	
	C is not correct because this contains four times as many moles of sulfuric acid for neutralisation	
	D is not correct because this contains twice as many moles of sulfuric acid for neutralisation	

Question	Answer	Mark
Number		
8	The only correct answer is B (9×10^{22})	(1)
	A is not correct because the number of moles has not been multiplied by 3	
	C is not correct because the number of moles has been multiplied by 4	
	D is not correct because the number of moles has been multiplied by 5	

Question	Answer	Mark
Number		
9	The only correct answer is D (KHSO ₄)	(1)
	A is not correct because chlorine is not a product	
	B is not correct because sulfur is not a product	
	C is not correct because hydrogen sulfide is not a product	

Question Number	Answer	Mark			
10	The only correct answer is C (purple)				
	A is not correct because in an organic solvent iodine is not blue-black				
	B is not correct because in an organic solvent iodine is not grey				
	D is not correct because in an organic solvent iodine is not yellow				

Question	Answer	Mark
Number		
11	The only correct answer is A (hexane)	(1)
	B is not correct because pentane has a lower boiling temperature as it has fewer electrons	
	C is not correct because 2-methylpentane has a lower boiling temperature as it is branched	
	D is not correct because 2,3-dimethylbutane has a lower boiling temperature as it is branched	

Question	Answer	Mark
Number		
12	The only correct answer is B (4-methylhexan-3-ol)	(1)
	A is not correct because the compound is 4-methylhexan-3-ol	
	C is not correct because the compound is 4-methylhexan-3-ol	
	D is not correct because the compound is 4-methylhexan-3-ol	

Question	Answer	Mark
Number		
13(a)	The only correct answer is B (nucleophile)	(1)
	A is not correct because the hydroxide ion is not acting as a reducing agent	
	C is not correct because the hydroxide ion is not acting as an electrophile	
	D is not correct because the hydroxide ion is not acting as a base	

Question	Answer	Mark
Number		
13(b)	The only correct answer is C $H = \begin{pmatrix} H & H & H \\ -C & -C & -CI \\ H & H & H \\ \vdots & OH^- \end{pmatrix}$	(1)
	 A is not correct because this is not the correct movement of the electrons B is not correct because this is not the correct movement of the electrons D is not correct because this is not the correct movement of the electrons 	

Question	Answer	Mark
Number		
14(a)	The only correct answer is D (propanone)	(1)
	A is not correct because propan-1-ol would give a colour change with acidified potassium dichromate(VI)	
	B is not correct because propan-2-ol would give a colour change with acidified potassium dichromate(VI)	
	C is not correct because propanal would give a colour change with acidified potassium dichromate(VI)	

Question	Answer			
Number				
14(b)	The only correct answer is A (propan-1-ol)			
	$\textbf{\textit{B}}$ is not correct because propan-2-ol would not give a peak at m/z 31			
	C is not correct because propanal would not give a peak at m/z 31or m/z 60			
	D is not correct because propanone would not give a peak at m/z 31or m/z 60			

Question Number	Answer	Mark
15	The only correct answer is C (a carboxylic acid)	
	A is not correct because the spectrum shows a peak for an O-H group	
	B is not correct because the spectrum shows a peak for a C=O group	
	D is not correct because the spectrum shows a peak for an O-H group	

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	An answer that makes reference to the following point:		(1)
	heat to constant mass /heat until no change in mass	Allow weight for mass Ignore just constant mass Ignore until no more steam is given off Ignore heat for a long time Ignore any test for water Ignore dry with a filter paper Do not award any drying agent	

Question Number	Answer		Additional Guidance	Mark
16(a)(ii)			Example of calculation:	(3)
	• calculation of mass and moles of H ₂ O		6.92 - 6.04 = 0.88 g	
		(1)	$0.88 \div 18 = 0.048889 / 4.8889 \times 10^{-2} $ (mol)	
	• calculation of moles of MgSO ₄	(1)	$6.04 \div 120.4 = 0.050166 / 5.0166 \times 10^{-2} $ (mol)	
	• calculation of 1:1 ratio so x = 1	(1)	$0.048889 \div 0.050166 \div = 0.97454 = 1:1 \text{ so } x = 1$ Or	
	Alternative calculations $6.04 \div 120.4 = 0.05017 \text{ (mol)}$	(1)	$0.050166 \div 0.048889 = 1.0261 = 1:1 \text{ so } x = 1$ Allow just 1:1	
	$6.92 \div 0.05017 = 137.94$ and		Ignore intermediate rounding to 1SF	
	137.94 - 120.4 = 17.54	(1)	Do not award more than 1 SF for x	
	17.54 ÷ 18 = 0.97454 = 1:1 so x =1 OR 6.04 ÷ 120.4 = 0.5017 (mol)	(1)(1)	Allow TE throughout	
	$0.88 \div 0.05017 = 17.5$	(1)		
	$17.54 \div 18 = 0.97454 = 1:1 \text{ so } x = 1$	(1)		
	OR $6.04 \div 120.4 = 0.05017 \text{ (mol)}$	(1)		
	$6.92 \div 0.05017 = 137.94$ and 120 + 18x = 137.94	(1)		
	x = 1	(1)		

Question Number	Answer		Additional Guidance	Mark
16(b)(i)			Example of calculation:	(4)
	• temperature change	(1)	29.4 – 16.6 = 12.8 (°C)	
	• energy change	(1)	$100 \times 4.18 \times 12.8 = 5350.4/5.3504 \times 10^{3} \text{ (J)}/5.3504 \text{ (kJ)}$	
	enthalpy change per mole	(1)	$5350.4 \text{ (J)} \div 0.0628 = 85197/8.5197 \times 10^{4} \text{ (J mol}^{-1})$ Or $5.3504 \text{ (kJ)} \div 0.0628 = 85.197 \text{ (kJ mol}^{-1})$	
	• correct sign and units and 2 or 3 SF	(1)	- 85200 J mol ⁻¹ /- 85000 J mol ⁻¹ /- 85.2 k J mol ⁻¹ /- 85 k J mol ⁻¹ Allow just mol ⁻ for mol ⁻¹ Allow use of 4.2 instead of 4.18 Ignore case of J TE throughout	
			Correct answer with sign and units and 2-3 SF scores 4	

Question Number	Answer	Additional Guidance	Mark
16(b)(ii)	A diagram that shows • both arrows pointing down • correct species and states in the bottom box (1)	MgSO ₄ (s) + 7H ₂ O(l) (+H ₂ O) (aq) (aq) (aq) Allow ions separated e.g. Mg ²⁺ (aq) and SO ₄ ²⁻ (aq) Ignore any additional water in the bottom box eg 7H ₂ O Ignore the values on arrow even if incorrect Do not award MgSO ₄ + (aq)	(2)

Question Number	Answer	Additional Guidance	Mark
16(b)(iii)		Example of calculation:	(2)
	• correct use of data (1)	$(+) - 85.2 \text{ (kJ mol}^{-1}) (-) + 15.8 \text{ (kJ mol}^{-1})$	
	• correct sign and answer (1)	- 101 (kJ mol ⁻¹)	
		+ 101 (kJ mol ⁻¹) score 1	
		Ignore units unless wrong and if mixed units are used max 1. Ignore SF TE on (b)(i) but no TE on an incorrect cycle in (b)(ii)	

Question Number	Answer	Additional Guidance	Mark
_	An answer that makes reference to the following points: • diagram showing the H of water molecule adjacent to the sulfate ion $ \begin{array}{c} \delta^{-} \\ \delta^{+} \\ \delta^{+} \end{array} $ (1) $ SO_{4}^{2} $	Correct dipole on water must be seen at least once and the delta + and delta- can be seen on 2 different water molecules/ 2 different diagrams Allow any number of water molecules Allow just different sized unlabelled circles for water molecules or unlabelled ball and stick diagrams	(2)
	• diagram showing O of the water molecule adjacent to the magnesium ion $ \frac{\text{Mg }^{2+}}{\delta^{-}} $ $ \delta^{+} $ $ \delta^{+} $ $ \delta^{+} $ $ (1)$	Allow one water molecule attracted to both ions Penalise wrong charges on the ions only once Penalise missing dipoles or a full charge not a dipole only once Penalise labelled hydrogen bond only once	

Question Number	Answer	Additional Guidance	Mark
16(c)(ii)	An answer that makes reference to the following points: • (the barium ions are removed from solution by) precipitation of insoluble barium sulfate (1)	Allow the barium ions precipitate out Allow insoluble barium sulfate is formed Allow solid barium sulfate is formed Ignore any reference to displacement/neutralisation reactions Ignore the non-toxicity of barium sulfate	(2)
	• ionic equation with all state symbols (1)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$ Do not award if any other ions are present eg Mg^{2+} on both side of the equation	

(Total for Question 16 = 16 Marks)

Question Number	Answer	Additional Guidance	Mark
17(a)(i)	An answer that makes reference to the following point:		(1)
	• 2-iodo-(2)-methylpropane	Allow 2-methyl-2-iodopropane Allow 2,2 iodomethylpropane Ignore missing hyphens Ignore gaps Ignore commas instead of hyphens Do not award 2-iodine -2-methylpropane Do not award 2-iodino -2-methylpropane	

Question Number	Answer	Additional Guidance	Mark
17(a)(ii)	An answer that makes reference to the following point:		(1)
	· CI	Ignore angles/ length of bonds	

Question Number	Answer		Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following points:			(2)
	observation with A yellow precipitate/ solid	(1)	Allow ppt/ppte or near miss spellings Allow precipitation Ignore formula even if incorrect	
	observation with B white precipitate/ solid	(1)	Yellow solution and white solution score 1 Precipitation colours reversed score 1 Do not award with any other wrong observations eg steamy fumes. Ignore any further tests on the ppt e.g. addition of ammonia	

Question Number	Answer	Additional Guidance	Mark
17(b)(ii)	An answer that makes reference to the following points: • A is a tertiary (halogenoalkane) and B is a primary one (1)	via a primary one	(2)
		Allow just tertiary reacts faster than primary Do not award A is a tertiary carbocation and B is a primary one Do not award tertiary halogenoalkane is more stable	
	• the C-I bond is weaker than the C-Cl bond (so A reacts faster)	Accept C-I bond enthalpy is less than C-Cl Allow C-I bond easier to break Ignore just C-I is easy to break/weak as there must be a comparison. Ignore any references to iodine/chlorine eg	
		electronegativity /reactivity Ignore S_N1 faster than S_N2	

Question Number	Answer		Additional Guidance	Mark
17(c)(i)	An answer that makes reference to the following points: • C ₄ H ₉ Cl + KCN \longrightarrow C ₄ H ₉ CN + KCl	(1)	Allow ionic equation $C_4H_9Cl + CN^- \longrightarrow C_4H_9CN + Cl^-$	(2)
	• pentanenitrile	(1)	Allow displayed, molecular, full structural or skeletal formula Ignore state symbols even if incorrect Allow pentane nitrile Allow pentanonitrile Allow pentane-1-nitrile Allow pentannitrile (missing the e) Allow pentanitrile (missing n and e)	

Question Number	Answer	Additional Guidance	Mark
17(c)(ii)	An answer that makes reference to the following point:		(1)
	 it is a way of extending the carbon chain/ adding extra carbon(s) 		

(Total for Question 17 = 9 Marks)

Question Number	Answer	Additional Guidance	Mark
18(a)		Example of calculation:	(5)
	• conversion of temperature to K and	95 + 273 = 368	
		$99 \times 1000 = 99000 \text{ (Pa)}$	
	• conversion of cm ³ to m ³ (1)	$81 \times 10^{-6} = 8.1 \times 10^{-5} \text{ (m}^3\text{)}$	
	• rearrangement of ideal gas equation (1)	$n = \underbrace{pV}_{RT}$	
	• calculation of n (1)	$\frac{99000 \times 8.1 \times 10^{-5}}{8.31 \times 368} = 2.6222 \times 10^{-3} \text{ (mol)}$	
	• calculation of relative molecular mass (1)	$\frac{0.12}{2.6222 \times 10^{-3}} = 45.763 \text{ (g mol}^{-1}\text{)}$	
		TE throughout	
		Ignore intermediate rounding	
		Ignore SF except 1	
		Correct answer with some working scores 5	

Question Number	Answer	Additional Guidance	Mark
18(b)	An answer that makes reference to the following point:		(1)
		Accept methoxymethane/CH ₃ OCH ₃	
	• ethanol/ CH ₃ CH ₂ OH/C ₂ H ₅ OH/C ₂ H ₆ O	Allow dimethyl ether	
		Allow TE from (a) provided it is a formula that	
		could exist	

(Total for Question 18 = 6 Marks)

Question Number	Answer		Additional Guidance	Mark
19(a)(i)	An answer that makes reference to the following points:			(2)
	instantaneous/temporary dipole and formed by asymmetrical distribution of charge/ random arrangement of electrons	(1)	Allow electron cloud is distorted Ignore references to atoms/molecules/elements	
	(these produce) induced dipoles OR description of induction	(1)	Ignore references to atoms/molecules /elements	

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	An answer that makes reference to the following point:		(1)
	• (hydrogen iodide has) more electrons	Ignore bigger atom/molecule Allow iodine/iodide has more electrons Do not award if other additional wrong answer are given e.g. more polarising/more bonds/more protons/more electronegative	

Question Number	Answer	Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following point:		(1)
	hydrogen fluoride has hydrogen bonding (the strongest intermolecular force)	Allow H bonds Ignore other intermolecular forces e.g. London forces Do not award if the hydrogen bond is clearly intramolecular	

Question Number	Answer		Additional Guidance	Mark
19(b)(i)	An answer that makes reference to the following points: • chlorine / Cl ₂ / same species / element / atom is oxidised and reduced (in the same reaction)	(1)		(3)
	There are 4 scoring points chlorine is oxidised forming HOCl /OCl /chlorate(I) changing oxidation number from 0 to +1 chlorine is reduced forming HCl / Cl / chloride changing oxidation number from 0 to -1	(2)	Oxidation numbers may be written in the equation and can be written as charges If oxidation and reduction is reversed award one pt for pts 1 and 3. All 4 points = 2 marks 2-3 points = 1 mark	

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)	An answer that makes reference to the following points: • shifting eqm to the right (to make more	(1)	Allow favours	(2)
	HCl/HOCl)	(1)	Allow equations	
	 because (NaOH would) react/ remove the HCl/H⁺ (and HOCl) 	(1)	Allow equations	
			Moves to the left and as the NaOH reacts with Cl ₂ will score 1	

(Total for Question 19 = 9 Marks)

Section C

Question Number	Answer	Additional Guidance	Mark
20(a)(i)		Example of equation	(2)
	• correct balanced equation (1)	Li (s) + $H_2O(l)$ \longrightarrow LiOH(aq) + $\frac{1}{2}H_2(g)$	
	• correct state symbols (1)	Allow multiples	
		M2 dependent on M1 or having the correct species in an unbalanced equation	

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	An answer that makes reference to the following points:		(2)
	• bubbles (of gas)/ fizzing/ effervescence (1)	Ignore just hydrogen/gas produced	
	• Li or solid disappears/ disintegrates /gets smaller	Allow Li or solid dissolves	
	OR		
	Li floats on water/moves on the water (1)	Ignore just exothermic/ temperature increase/gets warmer Ignore it melts Ignore it catches fire Ignore misty fumes Do not award white ppt/ (white)smoke	

Question Number	Answer		Additional Guidance	Mark
20(b)	An answer that makes reference to the following points:			(2)
	• Li reacts with nitrogen from the air	(1)	Allow it reacts with N_2 and O_2 from the air Allow N_2 from the air oxidises the Li	
	• formula of lithium nitride	(1)	Li ₃ N Ignore equations even if incorrect	

Question Number	Answer	Additional Guidance	Mark
20(c)(i)	Example of equation		(1)
	• $C_6Li + CoO_2$ \longrightarrow $LiCoO_2 + C_6$	Allow multiples Ignore any working Do not award 6C Do not award uncancelled electrons/Li ⁺	

Question	Answer		Additional Guidance	Mark
Number				
20(c)(ii)	An answer that makes reference to the following points:			(2)
	Reduction (of cobalt)	(1)	Allow it is an oxidising agent	
	• the oxidation number (of cobalt) changes from +4 to +3	(1)	Ignore reference to the gain of electrons by Li ⁺	

Question Number	Answer	Additional Guidance	Mark
20(c)(iii)	An answer that makes reference to the following point:		(1)
	• (the separator is porous/permeable and) allows ions/ Li ⁺ / to pass through	Allow electrons cannot pass through Ignore inert/unreactive Ignore insulator Do not award electrons can pass through	
		Do not award electrons can pass unough	

Question Number	Answer		Additional Guidance	Mark
20(d)(i)			Example of calculation	(3)
	• moles of Li	(1)	$2.45 \div 6.9 = 0.35507 \text{ (mol)}$	
	• % Al and moles of Al	(1)	$100 - 2.45 = 97.55 \div 27.0 = 3.6130 $ (mol)	
	• calculation of ratio	(1)	3.6130 ÷ 0.35507 = 10.175:1/10:1 Or 1:0.098	
	Allow the use of 7 for the relative atomic mass of Li		Allow Al ₁₀ Li	
			1:10 or 0.098:1 will also score 3 if it is clear the ratio refers to Li:Al. If not score 2.	
			Allow the use of 7 for the relative atomic mass of Li giving 0.35 (mol) and a ratio of 10.32:1	
			Intermediate rounding to 1SF resulting in a ratio of 9: 1 will score 2	
			Correct answer with some working score 3	
			If no other marks are awarded a ratio by mass of 97.55 : 2.45 giving 40:1 scores 1	
			Ignore SF	

Question Number	Answer	Additional Guidance	Mark
20 (d)(ii)	An answer that makes reference to the following point:		(1)
	• Either	There must be a comparison	
	makes the alloy stronger Or (being less dense than Al, the Li would make) the alloy less dense(so would make the aircraft lighter so less fuel used)	Accept harder/more rigid Allow reverse argument eg pure Al is weaker Allow it is lighter	
		Ignore reactivity/ malleable/durable/ melting point	

Question Number		Answer	Additional Guidance
*20(e)	This question assesses the student's ability to show a coherent and logically structured Answer with linkages and fully sustained reasoning. Marks are awarded for indicative content and for how the Answer is structured and shows lines of reasoning. The following table shows how the Marks should be awarded for indicative content.		Guidance on how the Mark scheme should be applied. The Mark for indicative content should be added to the Mark for lines of reasoning. For example, a response with five indicative Marking points that is partially structured with some
	Number of indicative Marking points seen in Answer	Number of Marks awarded for indicative Marking points	linkages and lines of reasoning scores 4 Marks (3 Marks for indicative content and 1 Mark for partial structure and some linkages and lines of reasoning).
	6 5-4 3-2 1 0	4 3 2 1 0	If there were no linkages between the points, then the same indicative Marking points would yield an overall score of 3 Marks (3 Marks for indicative
	The following table shows how the Marks should be awarded for structure and lines of reasoning. Number of Marks awarded		In general it would be expected that 5
		for structure of Answer and sustained lines of reasoning	or 6 indicative points would get 2 reasoning Marks, and 3 or 4 indicative points would get 1 Mark for reasoning,
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	and 0, 1 or 2 indicative points would score zero Marks for reasoning. If there is any incorrect chemistry, deduct Mark(s) from the reasoning. If no reasoning Mark(s) awarded do not deduct Mark(s).
	Answer is partially structured with some	1	Comment: Look for the indicative Marking points first, then consider the Mark for the structure of the Answer

linkages and lines of reasoning	
Answer has no linkages between points and is unstructured	0

and sustained line of reasoning.

Indicative content

IP1 magnesium has an extra shell than lithium (and as the charge on magnesium is Mg^{2+} and lithium Li^{+}) so the ions are similar in size.

Allow more shells/ more protons/ more periods/more shielding than lithium

IP2 equation for the thermal decomposition of lithium **or** magnesium nitrate.

4LiNO₃ → 2Li₂O + 4NO₂ + O₂ 2Mg(NO₃)₂ → 2MgO + 4NO₂ + O₂ If both equations are given both must be correct to

If both equations are given both must be correct to score the IP

IP3 equation for the thermal decomposition of sodium nitrate.

NaNO₃ \longrightarrow NaNO₂ + $\frac{1}{2}$ O₂

Allow fractions/ multiples in IP2 and IP3 Ignore state symbols even if incorrect in IP2 and IP3

IP4 lithium and magnesium nitrate produce nitrogen dioxide but sodium nitrate does not/ or sodium nitrate produces a nitrite but lithium and magnesium do not

Can be scored by equations even if incorrect or unbalanced

IP5 because Mg²⁺ and/or Li⁺ are smaller than Na⁺ Or Mg²⁺ and/or Li⁺ have greater charge density than Na⁺

This may be seen in a general trend i.e. the ions in a group get larger down the group/charge density decreases down the group

Allow Mg/Li is smaller than Na

IP6 so polarise the **nitrate ion**/ **anion more** (causing Mg²⁺ and Li⁺ to thermally decompose in a similar manner) Must be a comparison.

Allow weakens the N-O bond (of the nitrate) more

If there has been no mention of Na max 3 as only IP1, 2 and 5 can be awarded

Allow reverse argument for IP4, IP5 and 1P6